S.No. 3147

12PMA13

(For the candidates admitted from 2012–2013 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2020.

Fourth Semester

Mathematics

PROBABILITY THEORY

Time : Three hours

Maximum : 75 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$ Answer ALL questions.

- 1. State the Bayes theorem.
- 2. Define Marginal distribution.
- 3. If *X* is a random variable with the density function $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, show that the expected value of the random variable *X* is zero.
- 4. State the Lapunov inequality.
- 5. Find the semi invariance of the Poisson distribution.
- 6. Define probability generating function.

- 7. Define Hypergeometric distribution.
- 8. Prove that the sum of two independent Poisson random variable is a Poisson random variable.
- 9. State Borel-Cantelli theorem.
- 10. State Kolmogorov inequality.

SECTION B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL the questions.

- 11. (a) If F is the distribution function of one dimensional random variable X, then prove that
 - (i) $0 \le F(x) \le 1$ and
 - (ii) F(x) < F(y) if x < y.

Or

- (b) Let X be a random variable with distribution function F(X), then find the distribution function of Y = a X + b.
- 12. (a) Define the following :
 - (i) Absolute moment;
 - (ii) Regression of second type.

Or

 $\mathbf{2}$

(b) Show that the relation P(Y=aX+b)=1 is true if $\rho^2=1$.

```
S.No. 3147
```

13. (a) Obtain the formula for moments if the characteristic function of a random variable is given.

Or

- (b) Find the probability generating function of the Poisson distribution.
- 14. (a) Find the mean and variance of Binomial distribution.

 \mathbf{Or}

- (b) Find the value of A, if the density function is $f(x) = \frac{A}{x^2 - 2x + 5}, -\infty < x < \infty.$
- 15. (a) State and prove Kolmogorov inequality. Or
 - (b) If $X_n \to p X$, then prove that $X_n \to {}_L X$.

SECTION C — $(3 \times 10 = 30 \text{ marks})$ Answer any THREE questions.

16. Let $\{A_n\}$, $n=1, 2, \cdots$ be a non increasing sequence of events and let A be their product. Then prove that $P(A) = \lim_{n \to \infty} P(A_n)$.

3 S.No. 3147

- 17. Find the marginal distribution of the random variables X and Y given that $f(x, y) = \frac{1}{2\pi} e^{-\frac{x^2+2xy+y^2}{2}}$, $-\infty < x, y < \infty$. Also find the correlation coefficient.
- 18. Let F(x) and $\psi(x)$ be the distribution function and the characteristic function, respectively of the random variable X. If a+h and a-hh>0 be arbitrary points of continuity of F(X), then prove

that
$$F(a+h) - F(a-h) = \lim_{T \to \infty} \frac{1}{\pi} \int_{-T}^{T} \frac{\sinh t}{t} e^{-ita} \psi(t) dt$$
.

- 19. If $X \sim N(1, 2)$, find the probability that X is greater than 3 in absolute value.
- 20. State and prove Lindeberg-Levy Central Limit Theorem.

4

S.No. 3147