(For the candidates admitted from 2019-2020 onwards)
M.Sc. DEGREE EXAMINATION, NOVEMBER 2020.

Third Semester
Mathematics
PARTIAL DIFFERENTIAL EQUATION
Time : Three hours
Maximum : 75 marks

SECTION A - ($15 \times 1=15$ marks $)$

Answer ALL questions.

1. The operator $F\left(D, D^{\prime}\right)$ is said to be reducible if it can be factorized into the linear factor of the type
(a) $D+a D^{\prime}+b$
(b) $D+a D^{\prime}$
(c) $a+b$
(d) D
2. The auxiliary equation has equal roots, then the complementary function is
(a) $z=f_{1}(y+m x)+x f_{2}(y+m x)$
(b) $z=f_{1}(y+m x)+f_{2}(y+m x)$
(c) $z=f_{1}(y+m x)+f_{2}(x+m x)$
(d) $z=f_{1}(y+m x)+y f_{2}(x+m x)$
3. A second order partial differential equation is said to be parabolic if
(a) $B^{2}-4 A C=0$
(b) $B^{2}-4 A C<0$
(c) $B^{2}-4 A C>0$
(d) $c^{2}-4 A B=0$
4. Two dimensional Laplace equation is
(a) $\quad \nabla^{2} U>0$
(b) $\nabla^{2} U<0$
(c) $\quad \nabla^{2} U=0$
(d) $\nabla U=0$
5. Newtons law of gravitation
(a) $F=\frac{G m_{1} m_{2}}{r^{2}}$
(b) $F=\frac{m_{1} m_{2}}{r^{2}}$
(c) $\quad F=\frac{G m}{r^{2}}$
(d) $F=\frac{G m_{1} m_{2}}{r}$
6. The auxiliary equation has un equal roots, then the complementary function is
(a) $z=f_{1}\left(y+m_{1} x\right)+x f_{2}\left(y+m_{2} x\right)$
(b) $z=f_{1}\left(y+m_{1} x\right)+f_{2}\left(y+m_{2} x\right)$
(c) $z=f_{1}\left(y+m_{1} x\right)+y f_{2}\left(x+m_{2} x\right)$
(d) $\quad z=f_{1}(y+m x)+f_{2}(x+m x)$
7. Suitable solution for one dimentional heat equation is \qquad
(a) $T(x, t)=(A \cos \alpha x+B \sin \alpha x)^{e^{-\alpha^{2} t}}$
(b) $T(x, t)=(A \cos \alpha x+B \sin \alpha x)^{e^{\alpha^{2} t}}$
(c) $\quad T(x, t)=(A \cos \alpha x+B \sin \alpha x)$
(d) $\quad T(x, t)=(A x+B)^{e^{-\alpha^{2} t}}$
8. Possible solution of heat equation when $\lambda=0$ is
(a) $\quad T(x, t)=(A x+B) e^{-\alpha^{2} t}$
(b) $T(x, t)=(A x+B) e^{\alpha^{2} t}$
(c) $\quad T(x, t)=(A x+B) e^{t}$
(d) $T(x, t)=(A x+B)$
9. Insulated boundary conditions which states that heat flow across the surface is
(a) 0
(b) π
(c) 1
(d) λ
10. The wave equation is of the form
(a) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u$
(b) $\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u$
(c) $\frac{\partial u}{\partial t}=c^{2} \nabla^{2}$
(d) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2}$
11. In one dimentional wave equation the slope of the deflection curve is \qquad
(a) large
(b) small
(c) zero
(d) none
12. The solution of wave equation are called \qquad function.
(a) wave
(b) string
(c) heat
(d) none
13. If $f(t)$ is said to be of exponential order a, if there exist a real and finite positive number M such that
(a) $\quad \lim _{t \rightarrow \infty}|f(t)| e^{-\alpha t} \leq M$
(b) $\lim _{t \rightarrow \infty}|f(t)| e^{\alpha t} \leq M$
(c) $\quad \lim _{t \rightarrow 0}|f(t)| e^{-\alpha t} \leq M$
(d) $\lim _{t \rightarrow \infty}|f(t)| e^{-\alpha t}=M$
14. Laplace transform of $f(t)$ is defined by $L(f(t))=$ \qquad
(a) $\int_{0}^{\infty} f(t) e^{-s t} d t$
(b) $\int_{0}^{\infty} f(t) e^{s t} d t$
(c) $\int_{-\infty}^{\infty} f(t) e^{-s t} d t$
(d) $\int_{0}^{\infty} f(s) e^{-s t} d s$
15. $L(1)=$ \qquad
(a) $1 / t$
(b) $1 / s$
(c) $1 / a$
(d) 0

SECTION B - $(2 \times 5=10$ marks $)$
Answer any TWO questions.
16. If $u=f(x+i y)+g(x+i y)$, where f and g are arbitrary function. Show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
17. Show that the two dimension laplace equation $\nabla^{2} v=0$, in the plane polar coordinate r and θ has the solution of the form $\left(A r^{n}+B r^{-n}\right) e^{ \pm i n \theta}$.
18. Derive possible solutions of one Dimensional heat equation.
19. State the assumptions for derivations of one dimensional wave equation.
20. Find $L($ Sinh $a t)$.

SECTION C $-(5 \times 10=50$ marks $)$

Answer ALL questions.
21. (a) Solve the equation

$$
\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}-\frac{\partial^{3} z}{\partial x \partial y^{2}}+2 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+y}
$$

Or
(b) Reduce the equation

$$
(n-1)^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2 n} \frac{\partial^{2} z}{\partial y^{2}}-\frac{\partial^{3} z}{\partial x \partial y^{2}}=n y^{2 n-1} \frac{\partial z}{\partial y} \text { to }
$$

canonical form and find its general solution.
22. (a) Derive solution for Laplace equation in cylindrical coordinates.

Or
(b) Derive interior Neumann problem for a circle.
23. (a) Show that the solution of equation $\frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}}$ satisfying the conditions
(i) $T \rightarrow 0$, ast $\rightarrow \infty$
(ii) $\quad T=0$ for $x=0$ and $x=a$ for all $t>0$
(iii) $T=x$ when $t=0$ and $0<x<a$ is $T(x, t)=\frac{2 a}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin \left(\frac{n \pi x}{a}\right) \quad \exp$ $\left(-\left(\frac{n \pi}{a}\right)^{2} t\right)$.

Or
(b) Find the temperature in a sphere of radius a when its surface is maintained at zero temperature and its initial temperature is $f(r, \theta)$.
24. (a) Obtain the solution of the radio equation $\frac{\partial^{2} v}{\partial x^{2}}=L C \frac{\partial^{2} v}{\partial t^{2}}$ appropriate to the case when a periodic e.m.f. $v_{0} \cos p t$ is applied at the end $x=0$ of the line.

Or

(b) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a Position given by $y-y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. It released from rest from this position, find the displacement $y(x, t)$.
25. (a) Solve the initial boundary value problem $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, 0<x<1, t>0$, subject to initial and boundary conditions

$$
\begin{aligned}
& u(x, 0)=\sin \pi x, \frac{\partial u}{\partial t}(x, 0)=-\sin \pi x, 0<x<1 \quad \text { and } \\
& u(0, t)=u(1, t)=0, t>0
\end{aligned}
$$

Or
(b) Displacement of a infinite string is governed by $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty$ Subject to initial condition
$u(x, 0)=f(x),-\infty<x<\infty, \frac{\partial u}{\partial t}(x, 0)=0$.

