(8 pages)

S.No. 5036

19PMA04

(For the candidates admitted from 2019 – 2020 onwards)

M.Sc. DEGREE EXAMINATION, MARCH/APRIL 2021

First Semester

Mathematics

ORDINARY DIFFERENTIAL EQUATIONS

Time : Three hours

Maximum : 75 marks

PART A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

- The differential equation $L(y)=y''+a_1y'+a_2y=0$, 1. then $L(e^{rx})$ is
 - (a) $r^2 + a_1 r + a_2$ (b) $(r^2 + a_1 r + a_2)e^{rx}$ (c) $(r^2 + a_1 r + a_2)y$ (d) $(r^2 + a_1 r + a_2)e^{-rx}$
- The differential equation $y''+a_1y'+a_2y=0$ then 2.every solution tends to zero as
 - (a) $a_1 < 0$ (b) $a_1 = 0$
 - (d) $a_1 \neq 0$ (c) $a_1 > 0$

3. If $y''+a_1 y'+a_2 y$, where the constants a_1, a_2 are real. Suppose $\alpha + i\beta$ is a complex root of the characteristic polynomial, then α, β are

(a)	equal	(b)	complex
</td <td>· · · · ·</td> <td>()</td> <td>- · · · ·</td>	· · · · ·	()	- · · · ·

- (c) real (d) natural
- 4. Let $L(y)=y''+a_1y'+a_2y$, where a_1,a_2 are constants and let p be the characteristic polynomial in
 - (a) p(r) = r(r-1) + ar + b
 - (b) $p(r) r^2 + a_1 r + a_2$
 - (c) $p(r) = (r^2 + a_1 r + a_2)e^x$
 - (d) None of the above
- 5. The differential equation $y''+W^2 y=A\cos wx$, where A,w are positive constants then every solution φ is such that $|\phi(x)|$ assumes arbitrarily large value as
 - (a) $x \to \infty$ (b) $x \to 0$
 - (c) $x \rightarrow -\infty$ (d) $x \rightarrow -1$
 - 2 **S.No. 5036**

- 6. Two functions $\phi_1(x) = e^x, \phi_2(x) = e^{-x}, \phi_3(x) = e^{2x}$ defined $-\infty < x < \infty$ are
 - (a) Linearly independent
 - (b) Linearly dependent
 - (c) Both (a) and (b)
 - (d) None of the above
- 7. Let x_0 be in I and let $\alpha_1,...\alpha_n$ be any n constants there is atmost one solution φ of $L(\varphi)=0$ on I satisfying $\varphi(x_0)=\alpha_1, \varphi'(x_0)=\alpha_2,...\varphi^{(n-1)}(x_0)=\alpha_n$
 - (a) Uniqueness theorem
 - (b) Initial value problem
 - (c) Existence theorem
 - (d) None of the above

8. let
$$\alpha_{ij} = \int_{a}^{b} \overline{\phi_i(x)\phi_j}(x)dx (i, j=1, 2, ...n)$$
 then $\phi_1, ..., \phi_n$ are

linearly independent on

- (a) $a \le x \le b$ (b) $a \ge x \ge b$
- (c) $b \le x \le a$ (d) $a \le x \le 0$
 - 3 S.No. 5036

- 9. If $y''+\alpha(x)y=0$, where α is a continuous function on $-\infty < x < \infty$ which is of period $\xi > 0$ then
 - (a) $W(\phi_1, \phi_2)(x) = 0$ (b) $W(\phi_1, \phi_2)(x) \neq 0$
 - (c) $W(\phi_1, \phi_2)(x) = 1$ (d) $W(\phi_1, \phi_2)(x) \neq 1$
- 10. If r_1 and r_2 are the roots of the quadratic q(r)=r(r-1)+ar+b then q(r)=0 is called
 - (a) Characteristic polynomial
 - (b) Indical polynomial
 - (c) Legendre polynomial
 - (d) Bessel's polynomial
- 11. Let $x^2 y'' + ax y' + by = 0$ where a, b are constants. Let $\psi(t) = \phi(e^t)$ then

4

- (a) $\psi(\log x) = -\phi(x)$
- (b) $\psi(\log x) = \phi(x)$
- (c) $\psi(|\log x|) = |\phi(x)|$
- (d) $\psi(|\log x|) = -|\phi(x)|$

S.No. 5036
[P.T.O.]

- 12. The differential equation does not have any power series solution at an
 - (a) Regular singular point
 - (b) Singular point
 - (c) Irregular singular point
 - (d) None of the above
- 13. The existence and uniqueness of solution to first order equation is
 - (a) y' = f(x, y) (b) y' = f(x, y) + c(c) y' = f'(x, y) (d) y' = f''(x, y)
- 14. The solution of the problem y'=1+y, y(0)=0 then ϕ exists only on
 - (a) $-\pi < x < \pi$ (b) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (c) $\frac{\pi}{2} > 0$ (d) $-\infty < x < \infty$
 - 2
- 15. If $\phi_k(x) \rightarrow \phi_1(x)$ for each *x* satisfying
 - (a) $|x| \le 1$ (b) $|x| \le -\frac{1}{2}$
 - (c) $|x| \le \frac{1}{2}$ (d) $|x| \le -1$
 - 5 **S.No. 5036**

PART B — $(2 \times 5 = 10 \text{ marks})$

Answer any TWO questions.

- 16. State and prove Uniqueness theorem.
- 17. Let ϕ be any solution of

$$\begin{split} L(y) &= y^{n} + a_{1} y^{(n-1)} + ... + a_{n} y = 0 \quad \text{on an interval I} \\ \text{containing a point } x_{0} \text{. Then for all } x \text{ in} \\ I &\| \phi(x_{0}) \| e^{-k|x-x_{0}|} \text{ where } k = 1 + |a_{1}| + ... + |a_{n}| \text{.} \end{split}$$

- 18. State Existence theorem and Uniqueness theorem of initial value problems for the homogeneous equation.
- 19. Find the singular points of the following equation and determine those which are regular singular points of xy''+4y=0.
- 20. State existence theorem of convergence of the successive approximations.

PART C — $(5 \times 10 = 50 \text{ marks})$

Answer ALL questions.

21. (a) State and prove Existence theorem.

Or

- (b) If ϕ_1, ϕ_2 are two solutions of L(y)=0 on an interval I containing a point x_0 Then $W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)} W(\phi_1, \phi_2) x_0$.
 - 6

S.No. 5036

- 22. (a) Compute the solution of ψ of y''' + y'' + y' + y = 1 which satisfies $\psi(0)=0, \psi'(0)=1, \psi''(0)=0$. Or
 - (b) Let $\alpha_1, ..., \alpha_n$ be any *n* constants and let x_0 be any real number. There exist a solution ϕ of L(y)=0 on $-\infty < x < \infty$ satisfying $\phi(x_0) = \alpha_1, \phi'(x_0) = \alpha_2, ..., \phi^{(n-1)}(x_0) = \alpha_n$.
- 23. (a) Prove that there exist n linearly independent solutions of L(y)=0 on I.

Or

- (b) One solution of $y'' \frac{2}{x^2}y = 0, 0 < x < \infty$ is $\phi_1(x) = x^2$. Find a basis for the solutions for $0 < x < \infty$.
- 24. (a) Find all solutions of the equation for $x > 0, x^2 y'' + xy' + y = 0$.

Or

(b) Show that

(i)
$$J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
.
(ii) $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.

$$\mathbf{7}$$

S.No. 5036

25. (a) Find all real valued solutions of the equation $y'=3y^{2/3}$.

Or

8

(b) Let M, N be two real valued functions which has continuous first partial derivatives on same rectangle $R:|x-x_0| \le a; |y-y_0| \le b$. Then the equation M(x,y)+N(x,y)y'=0 is exact in R if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in R.

S.No. 5036