(7 pages) S.No. 3042

19PMA09

(For the candidates admitted from 2019-2020 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2020.

Third Semester

Mathematics

TOPOLOGY

Time : Three hours

Maximum : 75 marks

SECTION A — $(15 \times 1 = 15 \text{ marks})$

Answer ALL questions.

- 1. For a subset A of a topological space X, the intersection of all closed sets containing A is the
 - (a) closure of A (b) interior of A
 - (c) limit point of A (d) neighborhood of A
- 2. If A is open, A = Int A; while if A is closed then A

(a)	A	(b)	0
(c)	1	(d)	\overline{A}

- Limit point is otherwise called as ______ point.
 - (a) singular (b) cluster
 - (c) neighbour (d) none of these
- 4. The metric \overline{d} is called the standard bounded metric corresponding to d then $\overline{d}(x, y) = ----$.
 - (a) $\max\{d(x,y),1\}$ (b) $\sup\{d(x,y),1\}$
 - (c) $\min\{d(x,y),1\}$ (d) none of these
- 5. The norm of x by the equation is define by
 - (a) $||x|| = (x_1^2 + \dots + x_n^2)$ (b) $||x|| = (x_1^2 + \dots + x_n^2)^{\frac{1}{2}}$ (c) $||x|| = (x_1^2 - \dots - x_n^2)$
 - (d) $||x|| = (x_1^2 \dots x_n^2)^{\frac{1}{2}}$
- 6. If $f : X \to Y$ is a bijection, where X and Y are topological spaces and if both f and $f^{-1} : Y \to X$ are continuous, then f is called a
 - (a) homeomorphism
 - (b) homomorphism
 - (c) isomorphism
 - (d) meromorphism
- 2

- 7. If $f : [a,b] \to R$ is continuous then there exists an element $c \in [a,b]$ such that $f(x) \le f(c)$ for every $x \in [a,b]$ is statement of theorem.
 - (a) intermediate
 - (b) maximum value
 - (c) uniform continuity
 - (d) disjoint
- 8. If for every open set U of a space X, each component of U is open in X, then X is
 - (a) connected
 - (b) path connected
 - (c) locally connected
 - (d) locally path connected
- 9. The image of a connected space under a continuous map is
 - (a) continuous (b) connected
 - (c) compact (d) disjoint
- 10. The product of finitely many compact spaces is
 - (a) compact (b) connected
 - (c) continuous (d) closed

-.

If ev colle	ery open coverin ection that also c	g <i>A</i> covers	of X contains a finite sub X, then X is said to be
(a)	connected	(b)	continuous
(c)	cover	(d)	compact
Evei	ry compact subsp	ace of	f a Hausdorff space is
(a)	compact	(b)	connected
(c)	continuous	(d)	closed
Evei	ry compact m	etriza	ble space X has a
(a)	countable basis	(b)	sub-basis
(c)	separation	(d)	cover
A sp be –	ace having a cou	untabl	e dense subset is said to
(a)	First countable		
(b)	Second countab	ole	
(c)	Separable		
(d)	Completely reg	ular	
Evei	ry metrizable spa	ace sa	tisfies
(a)	second axiom of	f coun	tability
(b)	Lindel of condition		
(c)	first axiom of countability		

4

(d) basis conditions

S.No. 3042 [P.T.O.] SECTION B — $(2 \times 5 = 10 \text{ marks})$

Answer any TWO questions.

- 16. If **B** is a basis for the topology of *X* and **C** is a basis for the topology of *Y*, then show that the collection $D = \{B \times C : B \in B \text{ and } C \in C\}$ is a basis for the topology of $X \times Y$.
- 17. State and prove the pasting lemma.
- 18. Prove that a space X is locally connected if and only if for every open set U of X. each component of U is open in X.
- 19. State and prove the extreme value theorem.
- 20. Let X be a topological space. Let one-point sets in X be closed then prove that X is regular if and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\overline{V} \subset U$.

SECTION C — $(5 \times 10 = 50 \text{ marks})$

Answer ALL questions.

21. (a) Let X be a topological space. Then prove that the following conditions hold. (i) \$\phi\$ and X are closed (ii) Arbitrary intersections of closed sets are closed (iii) Finite unions of closed sets are closed.

Or 5

```
S.No. 3042
```

- (b) If 𝔅 is the basis for the topology of X and 𝔅 is a basis for the topology of Y. then show that the collection 𝔅 = {B × C | B ∈ 𝔅 and C ∈ 𝔅} is a basis for the topology of X × Y.
- 22. (a) Let X and Y be topological spaces; let $f: X \to Y$. Then show that the following are equivalent:
 - (i) f is continuous.
 - (ii) For every subset A of X one has $f(\overline{A}) \subset \overline{f(A)}$.
 - (iii) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X
 - (iv) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Or

(b) Prove that the topologies on Rⁿ induced by the Euclidean metric d and the square metric ρ are the same as the product topology on Rⁿ.

23. (a) State and prove the intermediate value theorem.

 \mathbf{Or}

- (b) Prove that a finite Cartesian product of connected space is connected.
- 24. (a) State and prove Lebesgue number lemma.

 \mathbf{Or}

- (b) Prove that the Product of finite many compact spaces is compact.
- 25. (a) State and prove Urysohn lemma.

Or

(b) State and prove Tietz extension theorem.

7